
Appendix A Equivalence of g-formula estimator and Snowden’s g-

computation algorithm

Proof that the g-formula estimation method presented in this paper is equivalent, in this setting, to the
g-computation algorithm outlined by Snowden et al. (2010) for both the ATE and the ATT.

Let Y be an outcome variable and A be a binary treatment variable. Assume L is a vector of length J which
represents a sufficient set for confounding adjustment. Consider the following linear model

E[Y |A,L] = b0 +b1A+b T
2 L+b T

3 LA (A.1)

where b2, b3 are parameter vectors of length J. Model A.1 is assumed to be correctly specified. The
parameter estimates b̂ = (b̂0, b̂1, b̂ T
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where b =(b0,b1,b T
2 ,b T

3 )T . The Snowden g-formula estimator for the ATE is obtained using the parameter
estimates b̂ = (b̂0, b̂1, b̂ T

2 , b̂ T
3 )T to compute the predicted values under the counterfactual scenarios of no

treatment (a = 0) and treatment (a = 1) for all. Specifically, let Ŷ a = Xab̂ denote the vector of predicted
values for each individual under the counterfactual scenario that all individuals receive treatment a, and
where the design matrix Xa has rows of the form Xa
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where L̄ is a vector of length J with elements equal to the sample means of the J confounding variables.

Now, let L̃i = (Li � L̄) and g = (g0, g1, gT
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3 )

T which solves

min
g Â

i
{Yi � (g0 + g1Ai + gT

2 L̃i + gT
3 L̃iAi)}2

or equivalently

min
g Â

i
{Yi �

�
(g0 � gT

2 L̄)+(g1 � gT
3 L̄)Ai + gT

2 Li + gT
3 LiAi

�
}2 (A.3)

We can find ĝ by first reparameterizing. Let b0 = g0 � gT
2 L̄, b1 = g1 � gT

3 L̄, b T
2 = gT

2 , and b T
3 = gT

3 . This
optimization problem is then equivalent to solving A.2 above, which yields the usual least squares estimator
b̂ = (b̂0, b̂1, b̂ T

2 , b̂ T
3 )T . Therefore, ĝ0 = b̂0 + ĝT

2 L̄, ĝ1 = b̂1 + ĝT
3 L̄, ĝT

2 = b̂ T
2 , and ĝT

3 = b̂ T
3 . That is, ĝ1 =

b̂1 + b̂ T
3 L̄. Note that ĝ1 is the estimated exposure coefficient from the g-formula model proposed in the

Supplementary Methods for the ATE, and the right side of this equality is exactly ˆAT ES from above. The
equivalence of the two g-formula estimators has thus been shown for the ATE.

The equivalence proof for the ATT estimators is analogous to the ATE proof above. Wang et al. (2017)
propose an extension of Snowden et al.’s g-computation algorithm for the ATT; they show that by restricting
Xa to only the treated individuals (i.e., those with A = 1), the algorithm returns a consistent estimate of
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the ATT. In particular, let Ŷ a, A=1 = Xa, A=1b̂ denote the vector of predicted values for the n1 individuals
with A = 1 under the counterfactual scenario that these individuals receive treatment a, and where the
design matrix Xa, A=1 has n1 rows with the same form given above. Here b̂ remains the usual least squares
estimator found by solving A.2 above. The Wang et al. (2017) extension to the Snowden g-formula estimator
for the ATT can be expressed
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where L̄⇤ is a vector of length J with elements equal to the sample means among the treated of the J
confounding variables.

Now let L̃i = (Li � L̄⇤) and g⇤ = (g⇤0 ,g⇤1 ,g⇤T
2 ,g⇤T

3 )T , and consider finding ĝ⇤ = (ĝ⇤0 , ĝ⇤1 , ĝ⇤T
2 , ĝ⇤T

3 )T which
solves
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Rearranging this optimization problem similarly to A.3 and reparameterizing analogously to above yields
ĝ⇤1 = b̂1 + b̂ T

3 L̄⇤. Note that ĝ⇤1 is the estimated exposure coefficient from the g-formula model proposed in
the Supplementary Methods for the ATT, and the right side of this equality is exactly ˆAT T S from above.
Thus the equivalence of the two g-formula estimators has been shown for the ATT as well.

The proof for the equivalence of the average treatment effect in the untreated (ATU) is similar to the proof
for the ATT.
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Appendix B R Workflows

B.1 Generate Population Data and Analysis Dataset

This section contains R code for (i) generating a simulated dataset similar to those used in the simulation
studies of the main text, and (ii) analyzing these data with each of regression, IPW, and the parametric
g-formula to get the estimated effect of smoking in the smokers and the corresponding estimated standard
errors. The dataset contains 770 individuals, which are sampled from a population of 10 million people.

set.seed(1)

n <- 770 # individuals per dset
nsim <- 1 # number of simulated dsets
nsup <- 1e7 # population size

The following variables are generated for the population, according to the observed characteristics of the
METSIM cohort.

## Age

age <- rnorm(nsup, mean=54.76, sd=5.07)

age.c <- scale(age, scale = TRUE)

## Alcohol consumption

totalcw <- rexp(nsup, rate=1/104.6)

totalcw.c <- scale(sqrt(totalcw), scale = TRUE)

## Everyday vegetable consumption

veg <- rbinom(nsup, 1, 0.83)

## Hobby exercise level

hex.p <- cbind(0.05 - 0.01*veg, 0.28 - 0.03*veg, 0.18 + 0.01*veg,

0.49 + 0.03*veg)

hobbyex <- sapply(1:nsup, function(i) sample(1:4, 1, replace=TRUE,

prob=hex.p[i,]))

## Body Mass Index

BMI.mn <- 26.59 - 0.33*(veg-0.5) - 0.25*(hobbyex - 1)

BMI <- rnorm(nsup, mean=BMI.mn, sd=3.47)

BMI.c <- scale(BMI, scale = TRUE)

## Current smoking

lp.smk <- exp(0.51 - 0.66*veg + 0.51*totalcw.c -

0.57*hobbyex - 0.42*BMI.c)

smoke.cu <- rbinom(nsup, 1, prob=lp.smk/(1+lp.smk))

dsn <- matrix(data=cbind(age, age.c, totalcw, totalcw.c, veg,

hobbyex, BMI, BMI.c, smoke.cu,

smoke.cu*totalcw.c, smoke.cu*veg,

smoke.cu*hobbyex, smoke.cu*BMI.c),

nrow=nsup)

colnames(dsn) <- c("age", "age.c", "totalcw", "totalcw.c", "veg",

"hobbyex", "BMI", "BMI.c", "smoke.cu",

"smk_totalcw", "smk_veg",

"smk_hobbyex", "smk_BMI")

The dataset is assembled by sampling without replacement from the population. Note that if multiple
datasets were being generated (i.e., nsim> 1), the same individual may be represented in more than one
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dataset. However, as written, this code doesn’t allow for individuals to be represented more than once
within a single dataset.

samps <- matrix(sapply(1:nsim,

function(x) sample(1:nsup,

n,

replace=FALSE)),

nrow=nsim, ncol=n, byrow = TRUE)

dsn.s <- matrix(dsn[t(samps),], nrow=nsim*n, ncol=ncol(dsn))

colnames(dsn.s) <- colnames(dsn)

B.2 Generate Gene Expression Data

Next, a matrix of coefficients is defined to set the influence of each of the covariates, the exposure, and their
interactions on the average treatment effect in the treated. These six sets of coefficients correspond to the
six simulation scenarios described in the main text.

## Coefficients of exposure, covariate, and intxn terms

## for individual gene expression means

coef <- matrix(c(rep(0, 10),

c(0.05, -0.1, 0.15, -0.2, 0.25, -2, rep(0, 4)),

c(-0.5, 1.0, -1.5, -1.0, 0.5, 2, rep(0, 4)),

c(rep(0.05, 5), 2, -1, 0, 0, 0),

c(rep(0.05, 5), 2, 1, 0, -1, 0),

c(rep(0.05, 5), 2, 0, 0, -1.5, -1.5)), nrow=10)

colnames(coef) <- c("Null", "NoInt1", "NoInt2", "Int1", "Int2", "Int3")

rownames(coef) <- c("age.c", "totalcw.c", "veg", "hobbyex", "BMI.c",

"smoke.cu", "smk_totalcw", "smk_veg",

"smk_hobbyex", "smk_BMI")

ngn <- ncol(coef)

The individual covariate values are combined with the coefficients to produce a mean expression level for
each gene in each individual. In other words, each person is given a mean expression level for each of the
simulated genes based on their set of covariate and exposure values. These means are used to generate gene
expression values from a normal distribution with standard deviation 0.24, for each gene.

## Compute the mean expression level for each simulated gene

covars.gnmn <- rownames(coef)

gn.mn.s <- dsn.s[ ,covars.gnmn] %*% coef

GE <- matrix(sapply(1:ngn,

function(x) rnorm(nsim*n,

mean=gn.mn.s[,x],

sd=0.24)),

nrow=n*nsim, ncol=ngn, byrow=FALSE)

colnames(GE) <- colnames(coef)

B.3 Get True ATT for Each Gene

The true population ATT is computed for each gene by summing the contributions from each covariate. The
covariate main effects don’t contribute to the ATT, only the exposure and the exposure-covariate interaction
terms. Since the ATT is of interest, the contributions made by the interaction terms are the product of
the coefficients and the mean value of each covariate in the current smokers (i.e., in the exposed). The
contribution from the exposure is just the coefficients themselves.
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dsn <- data.frame(dsn)

covmn.trt <- apply(dsn[which(dsn$smoke.cu == 1),

c("totalcw.c", "veg", "hobbyex", "BMI.c")],

2, mean)

smk.eff <- coef

smk.eff[1:5,] <- 0

smk.eff[7:10,] <- covmn.trt*smk.eff[7:10,]

tru.att <- colSums(smk.eff)

B.4 Analyze Simulated Dataset

Analyses are conducted according to the models used in the main text for each method. This includes the
addition of the quadratic term for age, though in simulations this term doesn’t contribute to the ATT. For
each method, the estimates and their estimated standard errors can be used to construct Wald confidence
intervals and get t-statistics and p-values.

dsn.s <- data.frame(dsn.s)

dsn.s$age2 <- I(dsn.s$age^2)

B.4.1 Traditional Regression Analysis

The linear regression model is fit to the data once per gene using the lmFit function from the limma package
for convenience and speed. Note that the standard errors recorded are the usual least squares estimates, not
the moderated standard errors that the lmFit function also produces.

## Create design matrix and fit linear model for each gene

design <- model.matrix(~smoke.cu + BMI.c + veg + totalcw.c +

hobbyex + age.c + scale(age2), dsn.s)

fit <- lmFit(t(GE), design)

## Collect and display results

Ests <- fit$coefficients[,2]

SEs <- fit$sigma*fit$stdev.unscaled[,2]

data.frame(rbind(Ests, SEs))

## Null NoInt1 NoInt2 Int1 Int2 Int3

## Ests 0.002323104 -2.0439902 2.01500677 1.74938784 -0.67929583 -1.98868044

## SEs 0.025139323 0.0245301 0.02507283 0.04947473 0.05932175 0.07061574

B.4.2 Inverse Probability Weighting Analysis

Begin the IPW analysis by fitting a logistic regression model of the exposure to obtain parameter estimates
needed for constructing the IP weights. Once the weights have been computed, it is good practice to check
their distribution for extreme values and to ensure the mean is close to its expected value E[W AT T ] = 2P(A=
1). For this dataset, there appear to be no extreme values and the mean is very close to its expected value.

fit_wts <- glm(smoke.cu ~ BMI + veg + totalcw + hobbyex + age + age2,

family=binomial(link="logit"), data=dsn.s)

ncov <- length(coef(fit_wts))

wt.sato <- ifelse(dsn.s$smoke.cu == 0,

exp(fit_wts$linear.predictors), 1)

summary(wt.sato)
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## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.01905 0.10330 0.17826 0.33902 0.42134 1.28176

2*mean(dsn$smoke.cu) # 2*P(A=1)

## [1] 0.3317606

A simple linear regression model is fit for each gene with the weights, again using the lmFit function. The
estimated ATT for each gene is recorded.

## Fit simple linear reg model

design <- model.matrix(~smoke.cu, dsn.s)

fit <- lmFit(t(GE), design, weights=wt.sato)

Ests <- fit$coefficients[,2]

The standard error estimates from ordinary least squares are not appropriate in general for the IPW estima-
tor, so the geex package is used to compute consistent standard error estimates. This approach stacks the
estimating equations for the weights with those for the Hajek estimator using the function estfun_IPW,
thereby accounting for estimation of the weights. The m_estimate function of the geex package com-
putes the variance-covariance matrix for all estimated quantities, and the elements corresponding to the
Hajek estimator are selected to compute the standard error estimate for each gene.

## First argument required for m_estimate function of geex

## Constructs the stacked estimating equations

estfun_IPW <- function(data, model){

L <- model.matrix(model, data=data)

A <- model.response(model.frame(model, data=data))

Y <- data[,1]

function(theta){

p <- length(theta)

p1 <- length(coef(model))

lp <- L %*% theta[1:p1]

rho <- plogis(lp)

IPW <- ifelse(A == 1, 1, exp(lp))

score_eqns <- apply(L, 2, function(x) sum((A - rho) * x))

ce1 <- IPW*(A==1)*(Y - theta[p-1])

ce0 <- IPW*(A==0)*(Y - theta[p])

c(score_eqns,

ce1,

ce0)

}

}

## Estimated counterfactual means

notexp <- unname(which(fit$design[,2] == 0))

mu0_hat <- rowMeans(fitted(fit)[,notexp])

mu1_hat <- rowMeans(fitted(fit)[,-notexp])

## Compute SEs, accounting for weight estimation

vcovs <- sapply(colnames(GE),

function(x) vcov(m_estimate(

estFUN = estfun_IPW,
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data = data.frame(GE[,x],

dsn.s[,c("age", "age2",

"totalcw", "veg",

"BMI", "hobbyex",

"smoke.cu")]),

roots = c(coef(fit_wts), mu1_hat[x], mu0_hat[x]),

compute_roots = FALSE,

outer_args = list(model = fit_wts)

)), simplify = FALSE )

SEs <- sapply(1:ncol(GE),

function(x) sqrt(vcovs[[x]][ncov+1, ncov+1] +

vcovs[[x]][ncov+2, ncov+2] -

2*vcovs[[x]][ncov+1, ncov+2]))

data.frame(rbind(Ests, SEs))

## Null NoInt1 NoInt2 Int1 Int2 Int3

## Ests 0.007559031 -2.04134088 2.07096587 1.6588133 -0.5233402 -1.8802092

## SEs 0.026950887 0.02623274 0.06423069 0.1077299 0.1346590 0.1568875

B.4.3 Parametric G-formula Analysis

Fitting the g-formula model requires first centering all non-exposure covariates at their sample mean in the
exposed. Once the appropriately centered main effects and interactions are generated, the full regression
model is fit to obtain the estimated ATT for each gene, once more using lmFit. As with IPW, the standard
error estimates are computed using stacked estimating equations to take the estimation of the covariate
means into account.

## Covariate means in the exposed

pdat <- dsn.s[, c("smoke.cu", "BMI", "veg", "totalcw",

"hobbyex", "age", "age2")]

covs <- pdat[, -1]

cov.mns <- apply(covs[which(pdat$smoke.cu == 1),], 2, mean)

## Create centered covariates

ncov <- length(cov.mns)

pdat[, c("BMI.c", "veg.c", "tot.c", "hob.c", "age.c", "age2.c")] <-

sapply(1:ncov, function(x) covs[,x] - cov.mns[x])

## Create intxn terms

intx <- c("smkBMI", "smkveg", "smktot", "smkhob")

cov.t <- pdat[, c("BMI.c", "veg.c", "tot.c", "hob.c")]

pdat[, intx] <- pdat$smoke.cu * cov.t

## Fit reg model

design <- model.matrix(~smoke.cu + BMI.c + veg.c + tot.c + hob.c +

age.c + age2.c + smkBMI + smkveg + smktot +

smkhob, pdat)

fit <- lmFit(t(GE), design)

Ests <- fit$coefficients[,2]

Similarly to above, the estfun_gf function is required by geex to produce the set of stacked estimating
equations. The m_estimate code is analogous to that shown above for IPW, but here the standard error
estimate of the g-formula estimator can be obtained directly from the diagonal of the variance-covariance
matrix for each gene.
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## First argument required for m_estimate function of geex

## Constructs the stacked estimating equations

estfun_gf <- function(data){

L <- data[,3:ncol(data)]

A <- data[,2]

Y <- data[,1]

I <- rep(1, length(Y))

function(theta){

pL <- ncol(L)

X.Lc <- matrix(NA, nrow = length(Y), ncol = pL)

for (i in 1:pL) {

X.Lc[,i] <- L[,i] - theta[i]

}

X <- cbind(I, A, X.Lc,

A*X.Lc[,1], A*X.Lc[,2], A*X.Lc[,3], A*X.Lc[,4])

p <- ncol(X)

b <- cbind(theta[(pL+1):(p+pL)])

Xb <- X %*% b

mn_eqns <- apply(X.Lc, 2, function(x) sum(A * x))

score_eqns <- apply(X, 2, function(x) sum((Y - Xb) * x))

c(mn_eqns,

score_eqns)

}

}

## SEs accounting for weight estimation

SEs <- sapply(colnames(GE),

function(x) sqrt( vcov(m_estimate(

estFUN = estfun_gf,

data = data.frame(GE[,x],

pdat[,c("smoke.cu", "BMI",

"veg", "totalcw",

"hobbyex", "age",

"age2")]),

roots = c(cov.mns, fit$coefficients[x,]),

compute_roots = FALSE

))[ncov+2, ncov+2] ) )

data.frame(rbind(Ests, SEs))

## Null NoInt1 NoInt2 Int1 Int2 Int3

## Ests 0.004852312 -2.03990409 1.93530314 1.6513069 -0.5340888 -1.8797919

## SEs 0.027014533 0.02551567 0.04884979 0.1090459 0.1330511 0.1560926
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Supplementary Methods

Data Preprocessing

Microarray data (Affymetrix Human Genome U219 Array) from the METSIM project (Laakso et al., 2017)
was downloaded from GEO accession GSE70353 (Civelek et al., 2017) using the Bioconductor package
GEOquery (Davis and Meltzer, 2007). The downloaded data was normalized by the study authors. Mi-
croarray measurements per probeset were summarized for each gene using the median polish method from
Tukey (1977) (the medpolish function in the R programming environment) on log2 transformed, normal-
ized expression data.

In general, missing covariate values in the data set must be addressed before employing regression, IPW, or
the parametric g-formula. If the percentage of individuals with missing covariates is low and the data are
believed to be missing completely at random (MCAR), then a complete case analysis may be expected to not
introduce bias. However, it is rarely the case that both of these criteria are met, and so it is recommended to
take a more sophisticated approach such as multiple imputation (Moodie et al., 2008; Perkins et al., 2018).
For further details and recommendations on handling missing covariates data when fitting causal models,
see Moodie et al. (2008).

Assume for all of the following models that expression level for gene g has been log2 transformed and
normalized, and that all probe sets have been collapsed (e.g., using median polish) resulting in one measure
per gene per subject. All vectors are assumed to be column vectors throughout.

Comparing Approaches for Exposure Effect Estimation

Let Yg represent the observed expression level for gene g and A be a binary exposure of interest taking on
values 0 or 1. For a = 0,1, let Y a

g denote the expression level for gene g had, possibly counter to fact, the
exposure level been a. These Y a

g are often referred to as counterfactuals or potential outcomes, and only
at most one of the potential outcomes Y 1

g and Y 0
g for gene g are observed for any given individual. The

target of inference here is the ATT for gene g and is defined as AT Tg = E[Y 1
g �Y 0

g |A = 1], the average effect
of the exposure on expression for gene g in the population of exposed individuals. The ATE for gene g
is similarly defined as AT Eg = E[Y 1

g �Y 0
g ], the average effect of the exposure on expression for gene g in

the population of all individuals. The methods outlined below use the observed data to estimate exposure
effects on gene expression, and the assumptions sufficient for valid inferences on AT Tg for each of these
methods are parsed out further in the remaining sections of the Supplementary Methods.

Regression

For modeling observed expression level Yg of gene g as a function of some exposure of interest A in the
presence of confounding, linear regression is the conventional approach. Confounders L, where L is a vector
of length J, were included in the model as covariates along with the exposure variable A. In particular, the
model can be written

E[Yg|A,L] = qg0 +qg1A+q T
g2L (S.1)

for each gene g, where qg2 is also a vector of length J. The estimated exposure effect q̂g1 and its estimated
standard error were computed in the usual fashion using ordinary least squares (OLS). The estimator q̂g1 in
S.1 is interpretable as estimating the ATE for gene g, which does not necessarily equal the ATT for gene g,
unless operating under the assumption AT Eg = AT Tg.

The omission of interaction terms from model S.1 assumes the exposure and confounders are not interacting
to influence gene expression, which is not necessarily true in general. Therefore if any such interactions are
present in the data, this regression model will not account for those relationships and can then yield biased
exposure effect estimates. On the other hand, as noted in the Discussion section, the inclusion of interaction
terms yields conditional exposure effects. Specifically, there is no one parameter in the regression model
with interactions that is interpretable as the ATT. If exposure-confounder interactions are included in model
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S.1, then the estimated coefficient of the exposure variable estimates the exposure effect for an individual
with confounder variable values all equal to zero. This quantity does not describe the average exposure
effect in the population, and depending on the range of values for the included confounding variables,
it may not even be close to describing the exposure effect for any people in the population. For these
reasons, neither the regression model with nor without interactions will yield consistent effect estimates in
general. The one exception where regression with interactions can consistently estimate the ATT is when
all confounders are centered at the mean in the treated, which is exactly the g-formula; for further details
see the Parametric g-formula section below and Appendix A. Since this manuscript is focused on marginal
exposure effects, interactions were omitted from the regression model in the main text. However, results
of fitting the regression model with interactions are included later in the Supplementary Results section for
both the simulated and METSIM data.

Inverse Probability Weighting

Inverse probability weights were computed by fitting the following logistic regression model with the binary
exposure A as the outcome and the set of J confounders L as the predictors:

logit(P(A = 1|L)) = a0 +aT
1 L (S.2)

where a1 is a vector of length J. The fitted values from this logistic regression model were used to construct
the individual weights that were then used in the models for gene expression. Choice of weights depends
on the target population; this paper focuses on the ATT, so the weights given below first derived in Sato
and Matsuyama (2003) were used. These weights take the form for each individual i of the ratio of the
conditional probability of the subject being exposed to the conditional probability of the subject’s actual
exposure status. That is, the weight for subject i equals

W AT T
i = Ai +(1�Ai)exp(a0 +aT

1 Li) (S.3)

So, if a subject was exposed their weight was simply equal to one. For unexposed subjects, weights were
estimated by substituting in the estimates â0, â1 from fitting model S.2 for the true parameter values in S.3,
i.e., Ŵ AT T

i = Ai +(1�Ai)exp(â0 + âT
1 Li). When using IPW it is good practice to check that the mean of

the weights is close to their expected value; for these weights, E[W AT T
i ] = 2P(A = 1).

After estimating the weights, the linear regression model

E[Yg|A] = qg0 +qg1A (S.4)

was fit for each gene g using weighted least squares with weights Ŵ AT T
i , yielding

q̂g1 =
Ân

i=1 Ŵ AT T
i AiYgi

Ân
i=1 Ŵ AT T

i Ai
� Ân

i=1 Ŵ AT T
i (1�Ai)Ygi

Ân
i=1 Ŵ AT T

i (1�Ai)

This estimator is sometimes referred to as the Hajek or modified Horwitz-Thompson estimator (Hernán and
Robins, 2020), and is consistent for AT Tg. Note that consistency of the Hajek estimator depends on the
model for A|L in S.2 being correctly specified. No outcome model is assumed; fitting S.4 by weighted least
squares is simply a convenient way to compute the Hajek estimator using standard software.

Parametric g-formula

In this final approach, the following altered version of the initial linear regression model was fit to the data.

E[Yg|A, L̃] = qg0 +qg1A+q T
g2L̃+q T

g3L̃A (S.5)

where L̃ = (L� t) and t is a vector of constants of length J, and qg2,qg3 are parameter vectors of length J.
This model differs from model S.1 in two key ways: all first order interactions between A and the covariates
L have been added, and all covariates L have been centered at t . Since the ATT was of primary interest
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here, t was chosen to equal the means of the covariates L among the exposed, E[L|A = 1]. Since the true
means are unknown, a consistent estimate for t was substituted, namely t̂ = Âi AiLi/Âi Ai. If interested in
the ATE instead, let t = E[L] and consistently estimate using t̂ = Âi Li/n.

The model was then fit using OLS to obtain the estimated AT Tg, q̂g1. This estimator is equivalent to the
Snowden et al. (2010) estimator and is consistent for AT Tg; see Appendix A.

Standard Error Estimators for Each Method

The standard error for the exposure effect estimator from the linear regression model was obtained using
the estimated variance matrix resulting from fitting the model with OLS, in keeping with the conventional
approach. Estimating equations were used to compute the standard error of both the IPW Hajek estimator
and the parametric g-formula estimator (Stefanski and Boos, 2002).

When taking an estimating equations approach to computing the standard errors, for IPW one must decide
whether or not to take the estimation of the weights into account. The variance estimator that results from
treating the weights as known is referred to here as the robust sandwich variance estimator (robust SVE).
Computing the robust SVE is readily accomplished using various R packages such as sandwich or geepack.
Accounting for the weight estimation in the variance computation, on the other hand, can be accomplished
through supplying the set of estimating equations to the geex package (Saul and Hudgens, 2020) in R.

When using IPW and the ATE is of interest, the robust SVE is conservative when the weights are assumed
known and consistent when weight estimation is taken into account (Lunceford and Davidian, 2004). If
using IPW to estimate the ATT, it is known from the theory of M-estimation (Stefanski and Boos, 2002)
that this variance estimator is consistent when weight estimation is taken into account; however, it can be
either conservative or anti-conservative when weights are assumed fixed. If computing the standard errors
with geex, the set of estimating equations needed include the score equations from the logistic regression
model in S.2 along with the two estimating equations corresponding to the two pieces of the Hajek estimator.

Bootstrapping is commonly employed to estimate standard errors when the g-formula is used to estimate
the ATE or ATT (Efron and Tibshirani, 1986; Snowden et al., 2010; Wang et al., 2017), which is a valid
option, but using stacked estimating equations provides a closed-form alternative. It is recommended when
using the estimating equations approach that the covariate mean estimation be taken into account; again,
by estimating equation theory, these standard errors are consistent and yield valid confidence intervals. If
using geex to compute the standard errors for this estimator, the set of estimating equations needed are those
corresponding to the estimation of each covariate mean and the parameters in model S.5.

In the simulations and data analyses of the paper, the variance of the IPW estimator for AT Tg was estimated
both ways and the two estimates were found to be fairly different in some instances and nearly identical
in others. The same approach was taken for the variance of the g-formula estimator for AT Tg, and the
standard errors were substantially larger when accounting for estimation of covariate means. The standard
error estimates reported were computed taking into account the estimation of the weights and the covariate
means. The R markdown workflow that accompanies this paper includes code for computing the variance
using stacked estimating equations for both IPW and the g-formula.

The standard errors for all methods were used to construct Wald 95% confidence intervals and perform
t-tests of H0 : qg1 = 0, i.e., no effect of exposure on gene expression in the exposed for gene g.

Assumptions

With all methods presented here, it is assumed the gene expression data have already been normalized and
reduced to one observation per person per gene (i.e., not probe-level data). These methods also require
that there are no missing values; if missing values are present in the covariates L or exposure A, see the
recommendations in the section above. For these methods to yield consistent estimates, it is also assumed
that there is no bias due to selection or systematic measurement error. Importantly, formal arguments for
IPW and the parametric g-formula estimators involve asymptotic justifications, and there is no guarantee
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that these methods will perform well for small or moderate sample sizes (e.g., n < 40 for IPW (Pirracchio
et al., 2012)).

In order for the IPW and g-formula methods to adequately adjust for confounding, the set of covariates
L must satisfy the conditional exchangeability assumption (Y a

g ??A|L). It is also required that positivity
P(A = a|L = l)> 0 for all l where dFL(l)> 0 and FL is the CDF of L, and the Stable Unit Treatment Value
Assumption (SUTVA) hold. SUTVA requires causal consistency, i.e., no different versions of exposure, and
no interference, i.e., one individual’s exposure status doesn’t affect another individual’s gene expression.

For the IPW and g-formula estimators to yield consistent effect estimates, the above assumptions must hold.
When using IPW, the additional assumption that the model of A|L is correctly specified is needed as well.
For the g-formula, no specification of a model for A|L is needed, but the model for Yg|A,L must be correctly
specified.
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Supplementary Results

Simulation Study for Ordinary vs Moderated t Statistic

In observational genomics studies, the total sample size is often large enough for results depending on large
sample theory to hold. The limma package (Smyth, 2004) is used in standard practice to obtain effect
estimates, t-statistics, and p-values for each gene when assessing the effect of some exposure on gene
expression. This package computes a moderated t-statistic that is shown to perform well in small sample
sizes, as are found in traditional genetic studies, and which converges to the ordinary t-statistic as the sample
size increases. The moderation of this t-statistic comes into play with empirical Bayes moderation of the
standard errors toward a common value; here it is shown empirically that these moderated standard errors
are practically equivalent to the ordinary standard errors in large samples.

In Figure S.1 the difference between the moderated and ordinary t-statistics for an example gene are given
for a variety of sample sizes, and with balanced and unbalanced group assignment. In particular, a randomly
chosen gene from the METSIM cohort data was used, and the 770 participants were randomly sampled
according to their current smoking status to create the analysis datasets. For each combination of sample
size and group allocation, 200 analysis datasets were constructed. Samples were drawn such that the same
individual may have been represented in more than one dataset, but not more than once within a single
dataset. Both types of t-statistic and their difference were computed for each dataset, and boxplots of the
200 differences are given for each scenario in Figure S.1. Regardless of the group allocation, once the total
sample size was around 100 or larger, the moderated and ordinary t-statistics were practically equivalent.

(a) Balanced group sizes (1:1) (b) Unbalanced group sizes (5:1)

Supplementary Materials, Figure S.1: Difference between the moderated and ordinary t-statistics for various
sample sizes with (a) balanced (1 non-smoker : 1 smoker) and (b) unbalanced groups (5 non-smokers : 1
smoker). The boxplot for each sample size represented in (a) and (b) summarizes the difference in t-statistics
for 200 datasets, each derived from the same gene.

All analyses in this paper were conducted with well over 100 individuals, and so ordinary linear regression
was used for simplicity.

Analyses Using Regression Model with Interactions

In the main text, the traditional regression model was constructed without any interaction terms. This
section presents results of the simulation studies designed in the main text and the METSIM analysis using
the regression approach with interactions in the model. Specifically, interactions between smoking (smk)
and each of alcohol consumption (alc), vegetable consumption (veg), hobby exercise (hex), and BMI (bmi)

5



were included. These terms were chosen because they reflect the interactions included in the parametric
g-formula approach. Both alc and bmi were centered at their population mean in the main effects and the
respective interaction terms to avoid collinearity with the intercept, as was done in the traditional regression
analysis.

The empirical bias and confidence interval coverage and width for the ATT estimator from the regression
model with interactions are given in Table S.1 below, again averaging over 1000 simulations per scenario.
The simulated data sets used were identical to those that were generated and analyzed in the main text.
Comparing the results in Table S.1 to those in Table 3, it is evident that both regression estimators showed
bias and failed to meet nominal coverage in the presence of exposure-covariate interactions. That is, the
addition of the interaction terms to the regression model did not counteract the estimator bias for these
scenarios, and in fact worsened the bias for multiple cases. The regression with interactions approach
performed well in terms of estimator bias and CI coverage for the first three scenarios, but the average
CI width in these cases greatly exceeded that for the other methods. Further, the regression model with
interactions doesn’t generally produce consistent marginal exposure effect estimates; the exposure effects
estimated from this model were conditional on the particular values of the confounding variables.

The exposure effect from the regression model with interactions, as reported here, is interpreted as the effect
of smoking on gene expression for an individual with alcohol consumption and BMI equal to the mean in
the sample, who doesn’t consume vegetables everyday, and who has an undefined hobby exercise level (i.e.,
hex = 0). As mentioned in the Supplementary Methods, this exposure effect estimate doesn’t necessarily
describe any observed individual in the population. Ultimately, obtaining one marginal estimate to describe
a population is desirable for many researchers, and the conditional estimates produced by the model with
interactions are not readily combined to produce a marginal estimate. There are multiple confounding
variables, some of which are continuous, resulting in an unwieldy number of conditional estimates to work
with.

Supplementary Materials, Table S.1: Average empirical bias, 95% confidence interval coverage, and aver-
age width for the regression with interactions estimator.

Scenario True ATT Estimate Bias 95% CI Coverage 95% CI Width
Null Case 0.00 0.00 0.95 0.33
No Interactions 1 -2.00 -0.01 0.95 0.33
No Interactions 2 2.00 0.06 0.93 0.51
Interactions 1 1.59 0.36 0.09 0.36
Interactions 2 -0.36 2.41 0.00 0.37
Interactions 3 -1.75 3.75 0.00 0.33

When fit using the METSIM data, the regression model with interactions returned the same top two genes
as ranked by p-value, but the smoking effect estimates and SEs were strikingly different from the other
estimators. In particular, the smoking effect estimates for the top two genes, CYP1A1 and CYP1B1 were,
respectively, 2.81 and 0.99. Both smoking effect estimates were substantially larger than the estimates
produced by the other three methods (from Figure 1: approximately 2.1 and 0.75 for CYP1A1 and CYP1B1,
respectively). The SE estimates for these top two genes (0.20 and 0.16, respectively) were approximately
three times larger than the SE estimates produced by the regression model without interactions. This result
is in accordance with those shown above for the simulation studies.

Root Mean Square Error for Simulation Study Results

To further examine the bias-variance trade-off of the ATT estimators, the root mean square error (RMSE)
was calculated over the 1000 simulated datasets from the main text and the results are given in Table S.2. In
every scenario considered, the estimator from the regression model with interactions had the highest RMSE;
this is not surprising given the bias and CI width results presented in Table S.1. With the exception of the
Interactions 3 scenario, the RMSE for the IPW and g-formula estimators were very close. The only scenario
considered here where the estimator from the traditional regression model had RMSE clearly lower than
both IPW and the g-formula was Interactions 3, but the g-formula RMSE was only slightly larger.
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Supplementary Materials, Table S.2: Root Mean Square Error for the regression, IPW, parametric g-
formula, and regression with interactions ATT estimators.

Scenario Reg IPW G-form Reg + Int
Null Case 0.024 0.027 0.025 0.083
No Interactions 1 0.138 0.099 0.098 0.381
No Interactions 2 0.229 0.128 0.128 2.412
Interactions 1 0.253 0.177 0.178 3.754
Interactions 2 0.025 0.031 0.025 0.086
Interactions 3 0.045 0.136 0.050 0.144

Sensitivity Analyses of METSIM Microarray Data

As mentioned in the main text, there was one large IP weight from the METSIM primary analysis whose
influence deserves further investigation. Deleting this individual from the data resulted in a sample of size
769, which was analyzed again in the same manner as above. Results of the regression, IPW, and g-formula
sensitivity analysis are compared to the results from the primary analysis in Figure S.2a - S.2c.

Additionally, the leverage values for each individual were computed from the design matrices of the g-
formula and regression methods. The individual with highest leverage value was the same for both meth-
ods, and another sensitivity analysis was performed by deleting this individual; the results of this second
sensitivity analysis are compared to the results from the primary analysis in Figure S.2d - S.2f. Notably,
the individual with second highest leverage value was the same individual who generated the largest weight
and who was deleted in the sensitivity analysis above. The genes represented in this figure are the same set
as those in Figure 1, namely the top 50 genes as ranked in the primary analysis.

In particular, the first row of this figure shows the deletion of the observation with largest weight had very
little effect on the regression and g-formula estimates, standard errors, and p-values. On the other hand IPW
appears to be more sensitive to the deletion of this observation, with percent difference in effect estimates
and standard errors ranging up to a magnitude of 30 and 25 respectively. These changes were reflected in
the � log10 adjusted p-values as well; the bulk of the IPW p-values did not change by more than a magnitude
of 50 percent, but p-values for some estimates changed by more than a magnitude of 300 percent. While
the effect on the majority of the IPW estimates, standard errors, and p-values was small, some of the top 50
genes saw substantial changes.

For the second sensitivity analysis where the observation with largest leverage value was deleted, the g-
formula and IPW estimates were affected similarly ((�8,6) percent difference) and to a slightly larger
degree than the regression estimates ((�2,3) percent difference). The change in standard errors was largest
again for IPW but still contained to (�1,5) percent difference, much smaller than for the previous sensitivity
analysis. The change in g-formula standard errors was contained to (�1,2) percent difference, and the
regression standard errors changed by less than one percent in either direction. These changes were reflected
in the � log10 adjusted p-values as well, with the percent difference for the regression and g-formula p-
values having a spread comparable to the previous sensitivity analysis, and with the IPW p-values being
considerably less variable than before.
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Sensitivity Analysis 1: Delete Observation with Largest IP Weight

(a) Percent Difference in Estimates (b) Percent Difference in Standard Errors (c) Percent Difference in � log10 adjusted
p-value

Sensitivity Analysis 2: Delete Observation with Largest Leverage Value

(d) Percent Difference in Estimates (e) Percent Difference in Standard Errors (f) Percent Difference in � log10 adjusted p-
value

Supplementary Materials, Figure S.2: (a)-(c): Comparison of METSIM primary and sensitivity analysis
results when deleting observation with largest weight. Top 50 genes are represented, ranked by p-value.
(a), (b), and (c) respectively show the percent difference (primary - sensitivity) of the effect estimates,
standard errors, and � log10 Benjamini-Hochberg adjusted p-values. (d)-(f): Comparison of METSIM
primary and sensitivity analysis results when deleting observation with largest leverage value, which was
the same observation for both the regression and g-formula methods. Top 50 genes are represented, ranked
by p-value. (d), (e), and (f) respectively show the percent difference (primary - sensitivity) of the effect
estimates, standard errors, and � log10 Benjamini-Hochberg adjusted p-values. R = Regression, W = Inverse
Probability Weighting, G = Parametric G-Formula.
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